41. For the induced draught the fan is located
(a) near bottom of chimney
(b) near bottom of furnace
(c) at the top of the chimney
(D) anywhere permissible
Ans: a
42. The pressure at the furnace is minimum in case of
(a) forced draught system
(b) induced draught system
(c) balanced draught system
(d) natural draught system
Ans: c
43. The efficiency of chimney is approximately
(a) 80%
(b) 40%
(c) 20%
(d) 0.25%
Ans: d
44. The isentropic expansion of steam through nozzle for the steam initially superheated at inlet is approximated by equation
(a) pvls=C
(b) pv1126 = C
(c) pv1A = C
(d) pv = C
Ans: a
45. The ratio of exit pressure to inlet pressure for maximum mass flow rate per unit area of steam through a nozzle when steam is initially dry saturated is
(a) 0.6
(6) 0.578
(c) 0.555
(d) 0.5457
Ans: b
46. The ratio of exit pressure to inlet pressure of maximum mass flow rate per area of steam through a nozzle when steam is initially superheated is
(a) 0.555
(b) 0.578
(c) 0.5457
(d) 0.6
Ans: c
47. The critical pressure ratio of a convergent nozzle is defined as
(a) the ratio of outlet pressure to inlet pressure of nozzle
(b) the ratio of inlet pressure to outlet pressure of nozzle
(c) the ratio of outlet pressure to inlet pressure only when mass flow rate per unit area is minimum
(d) the ratio of outlet pressure to inlet pressure only when mass flow rate = c
Ans: d
48. The isentropic expansion of steam through nozzle for the steam initially dry saturated at inlet is approximated by equation.
(a)pv = C
(b)pv1A = C
(c)pv1i = C
(d)pv
Ans: d
49. The effect of considering friction losses in steam nozzle for the same pressure ratio leads to
(a) increase in exit velocity from the nozzle
(6) decrease in exit velocity from the nozzle
(c) no change in exit velocity from the nozzle
(d) increase or decrease depending upon the exit quality of steam
Ans: b
50. The effect of considering friction in steam nozzles for the same pressure ratio leads to
(a) increase in dryness fraction of exit steam
(b) decrease in dryness fraction of exit steam
(c) no change in the quality of exit steam
(d) decrease or increase of dryness frac-tion of exit steam depending upon inlet quality
Ans: a
Read More Questions:
Power Plant Engineering MCQs Part1
Power Plant Engineering MCQs Part2
Power Plant Engineering MCQs Part3
Power Plant Engineering MCQs Part4
Power Plant Engineering MCQs Part5
Power Plant Engineering MCQs Part6
Power Plant Engineering MCQs Part7
Power Plant Engineering MCQs Part8
Power Plant Engineering MCQs Part9
Power Plant Engineering MCQs Part10
(a) near bottom of chimney
(b) near bottom of furnace
(c) at the top of the chimney
(D) anywhere permissible
Ans: a
42. The pressure at the furnace is minimum in case of
(a) forced draught system
(b) induced draught system
(c) balanced draught system
(d) natural draught system
Ans: c
43. The efficiency of chimney is approximately
(a) 80%
(b) 40%
(c) 20%
(d) 0.25%
Ans: d
44. The isentropic expansion of steam through nozzle for the steam initially superheated at inlet is approximated by equation
(a) pvls=C
(b) pv1126 = C
(c) pv1A = C
(d) pv = C
Ans: a
45. The ratio of exit pressure to inlet pressure for maximum mass flow rate per unit area of steam through a nozzle when steam is initially dry saturated is
(a) 0.6
(6) 0.578
(c) 0.555
(d) 0.5457
Ans: b
46. The ratio of exit pressure to inlet pressure of maximum mass flow rate per area of steam through a nozzle when steam is initially superheated is
(a) 0.555
(b) 0.578
(c) 0.5457
(d) 0.6
Ans: c
47. The critical pressure ratio of a convergent nozzle is defined as
(a) the ratio of outlet pressure to inlet pressure of nozzle
(b) the ratio of inlet pressure to outlet pressure of nozzle
(c) the ratio of outlet pressure to inlet pressure only when mass flow rate per unit area is minimum
(d) the ratio of outlet pressure to inlet pressure only when mass flow rate = c
Ans: d
48. The isentropic expansion of steam through nozzle for the steam initially dry saturated at inlet is approximated by equation.
(a)pv = C
(b)pv1A = C
(c)pv1i = C
(d)pv
Ans: d
49. The effect of considering friction losses in steam nozzle for the same pressure ratio leads to
(a) increase in exit velocity from the nozzle
(6) decrease in exit velocity from the nozzle
(c) no change in exit velocity from the nozzle
(d) increase or decrease depending upon the exit quality of steam
Ans: b
50. The effect of considering friction in steam nozzles for the same pressure ratio leads to
(a) increase in dryness fraction of exit steam
(b) decrease in dryness fraction of exit steam
(c) no change in the quality of exit steam
(d) decrease or increase of dryness frac-tion of exit steam depending upon inlet quality
Ans: a
Read More Questions:
Power Plant Engineering MCQs Part1
Power Plant Engineering MCQs Part2
Power Plant Engineering MCQs Part3
Power Plant Engineering MCQs Part4
Power Plant Engineering MCQs Part5
Power Plant Engineering MCQs Part6
Power Plant Engineering MCQs Part7
Power Plant Engineering MCQs Part8
Power Plant Engineering MCQs Part9
Power Plant Engineering MCQs Part10
No comments:
Post a Comment