51. A beam of uniform strength has at every cross-section same
a) bending moment
b) bending stress
c) deflection
d) stiffness
Ans: b
52. For no torsion, the plane of bending should
a) be parallel to one of the principal axes
b) pass through shear centre of section
c) pass through neutral axis of the section
d) pass through centre of gravity of the section
Ans: b
53. Two beams, one of circular cross-section and other of square cross-section, have equal areas of cross-section. If subjected to bending
a) circular section is more economical
b) square section is more economical
c) both sections are equally strong
d) both sections are equally stiff
Ans: b
54. The portion, which should be removed from top and bottom of a circular cross section of diameter d in order to obtain maximum section modulus, is
a) 0.01 d
b) 0.1 d
c) 0.011 d
d) 0.11 d
Ans: c
55. A beam of overall length / rests on two simple supports with equal overhangs on both sides. Two equal loads act at the free ends. If the deflection at the centre of the beam is the same as at either end, then the length of either overhang is
a) 0 152 1
b) 0.207 1
c) 0.252 1
d) 0.277 1
Ans: a
56. A beam ABC rests on simple supports at A and B with BC as an overhang. D is centre of span AB. If in the first case a concentrated load P acts at C while in the second case load P acts at D, then the
a) deflection at D in the first case will be equal to the deflection at C in the second case
b) deflection at C in the first case is equal to the deflection at D in the second case
c) deflection at D in the first case will always be smaller than the deflection at C in the second case
d) deflection at D in the first case will always be greater than the deflection at C in the second case
Ans: a
57. If the deflection at the free end of a uniformly loaded cantilever beam is 15mm and the slope of the deflection
curve at the free end is 0.02 radian, then the length of the beam is
a) 0.8 m
b) lm
c) 1.2 m
d) 1.5m
Ans: b
58. If the deflection at the free end of a uniformly loaded cantilever beam of length 1 m is equal to 7.5 mm, then the slope at the free end is
a) 0.01 radian
b) 0.015 radian
c) 0.02 radian
d) none of the above
Ans: c
58. A cantilever beam carries a uniformly distributed load from fixed end to the centre of the beam in the first case and a uniformly distributed load of same inten¬sity from centre of the beam to the free end in the second case. The ratio of deflections in the two cases is
a) 1/2
b) 3/11
c) 5/24
d) 7/41
Ans: d
59. If the length of a simply supported beam carrying a concentrated load at the centre is doubled, the defection at the centre will become
a) two times
b) four times
c) eight times
d) sixteen times
Ans: c
60. A simply supported beam with rectangular cross-section is subjected to a central concentrated load. If the width and depth of the beam are doubled, then the deflection at the centre of the beam will be reduced to
a) 50%
b) 25%
c) 12.5%
d) 6.25%
Ans: d
a) bending moment
b) bending stress
c) deflection
d) stiffness
Ans: b
52. For no torsion, the plane of bending should
a) be parallel to one of the principal axes
b) pass through shear centre of section
c) pass through neutral axis of the section
d) pass through centre of gravity of the section
Ans: b
53. Two beams, one of circular cross-section and other of square cross-section, have equal areas of cross-section. If subjected to bending
a) circular section is more economical
b) square section is more economical
c) both sections are equally strong
d) both sections are equally stiff
Ans: b
54. The portion, which should be removed from top and bottom of a circular cross section of diameter d in order to obtain maximum section modulus, is
a) 0.01 d
b) 0.1 d
c) 0.011 d
d) 0.11 d
Ans: c
55. A beam of overall length / rests on two simple supports with equal overhangs on both sides. Two equal loads act at the free ends. If the deflection at the centre of the beam is the same as at either end, then the length of either overhang is
a) 0 152 1
b) 0.207 1
c) 0.252 1
d) 0.277 1
Ans: a
56. A beam ABC rests on simple supports at A and B with BC as an overhang. D is centre of span AB. If in the first case a concentrated load P acts at C while in the second case load P acts at D, then the
a) deflection at D in the first case will be equal to the deflection at C in the second case
b) deflection at C in the first case is equal to the deflection at D in the second case
c) deflection at D in the first case will always be smaller than the deflection at C in the second case
d) deflection at D in the first case will always be greater than the deflection at C in the second case
Ans: a
57. If the deflection at the free end of a uniformly loaded cantilever beam is 15mm and the slope of the deflection
curve at the free end is 0.02 radian, then the length of the beam is
a) 0.8 m
b) lm
c) 1.2 m
d) 1.5m
Ans: b
58. If the deflection at the free end of a uniformly loaded cantilever beam of length 1 m is equal to 7.5 mm, then the slope at the free end is
a) 0.01 radian
b) 0.015 radian
c) 0.02 radian
d) none of the above
Ans: c
58. A cantilever beam carries a uniformly distributed load from fixed end to the centre of the beam in the first case and a uniformly distributed load of same inten¬sity from centre of the beam to the free end in the second case. The ratio of deflections in the two cases is
a) 1/2
b) 3/11
c) 5/24
d) 7/41
Ans: d
59. If the length of a simply supported beam carrying a concentrated load at the centre is doubled, the defection at the centre will become
a) two times
b) four times
c) eight times
d) sixteen times
Ans: c
60. A simply supported beam with rectangular cross-section is subjected to a central concentrated load. If the width and depth of the beam are doubled, then the deflection at the centre of the beam will be reduced to
a) 50%
b) 25%
c) 12.5%
d) 6.25%
Ans: d
No comments:
Post a Comment